Run TimeGPT in a distributed manner using Dask.
Before proceeding, make sure you have an API key from Nixtla.
Highlights
• Simplify distributed computing with Fugue.
• Run TimeGPT at scale on a Dask cluster.
• Seamlessly convert pandas DataFrames to Dask.
Outline
1
Step 1: Installation
Install Fugue and Dask
Install Fugue and Dask
Fugue provides an easy-to-use interface for distributed computing over frameworks like Dask.If running on a distributed Dask cluster, ensure the
You can install
fugue
with:Install Fugue and Dask
nixtla
library is installed on all worker nodes.2
Step 2: Load Your Data
You can start by loading data into a pandas DataFrame. In this example, we use hourly electricity prices from multiple markets:
Load Electricity Data
Example pandas DataFrame:
unique_id | ds | y | |
---|---|---|---|
0 | BE | 2016-10-22 00:00:00 | 70.00 |
1 | BE | 2016-10-22 01:00:00 | 37.10 |
2 | BE | 2016-10-22 02:00:00 | 37.10 |
3 | BE | 2016-10-22 03:00:00 | 44.75 |
4 | BE | 2016-10-22 04:00:00 | 37.10 |
3
Step 3: Import Dask
Convert the pandas DataFrame into a Dask DataFrame for parallel processing.
Convert to Dask DataFrame
When converting to a Dask DataFrame, you can specify the number of partitions based on your data size or system resources.
4
Step 4: Use TimeGPT on Dask
To use TimeGPT with Dask, provide a Dask DataFrame to Nixtla’s client methods instead of a pandas DataFrame.
For the public API, two models are available:
•
Important Concept: NixtlaClient
Instantiate the
NixtlaClient
class to interact with Nixtla’s API.Initialize NixtlaClient
Using an Azure AI endpoint
Using an Azure AI endpoint
To use Azure AI, set the
base_url
parameter:Azure AI Endpoint Setup
You can use any method from the
NixtlaClient
, such as forecast
or cross_validation
.- Forecast Example
- Cross-validation Example
Forecast with TimeGPT and Dask
unique_id | ds | TimeGPT | |
---|---|---|---|
0 | BE | 2016-12-31 00:00:00 | 45.190453 |
1 | BE | 2016-12-31 01:00:00 | 43.244446 |
2 | BE | 2016-12-31 02:00:00 | 41.958389 |
3 | BE | 2016-12-31 03:00:00 | 39.796486 |
4 | BE | 2016-12-31 04:00:00 | 39.204533 |
Azure AI Models
Azure AI Models
When using an Azure AI endpoint, set
model
to "azureai"
:Azure AI Model Usage
timegpt-1
(default)
• timegpt-1-long-horizon
See the Long Horizon Forecasting Tutorial for details on timegpt-1-long-horizon
.TimeGPT with Dask also supports exogenous variables. Refer to the Exogenous Variables Tutorial for details. Substitute pandas DataFrames with Dask DataFrames as needed.