Learn how to fine-tune a model using specific loss functions, configure the Nixtla client, and evaluate performance improvements.
finetune_loss
argument. Below are the available loss
functions:
"default"
: A proprietary function robust to outliers."mae"
: Mean Absolute Error"mse"
: Mean Squared Error"rmse"
: Root Mean Squared Error"mape"
: Mean Absolute Percentage Error"smape"
: Symmetric Mean Absolute Percentage Errorunique_id | timestamp | value | |
---|---|---|---|
0 | 1 | 1949-01-01 | 112 |
1 | 1 | 1949-02-01 | 118 |
2 | 1 | 1949-03-01 | 132 |
3 | 1 | 1949-04-01 | 129 |
4 | 1 | 1949-05-01 | 121 |
finetune_loss
parameter of the forecast
method.
mae | mse | rmse | mape | smape | |
---|---|---|---|---|---|
Metric improvement (%) | 8.54 | 0.31 | 0.64 | 31.02 | 7.36 |